
Stride: A Declarative and Reactive Language for Sound Synthesis and Beyond

Joseph Tilbian
jtilbian@mat.ucsb.edu

Andrés Cabrera
andres@mat.ucsb.edu

Media Arts and Technology Program
University of California, Santa Barbara

ABSTRACT

Stride is a declarative and reactive domain specific pro-
gramming language for real-time sound synthesis, process-
ing, and interaction design. Through hardware resource
abstraction and separation of semantics from implemen-
tation, a wide range of computation devices can be tar-
geted such as microcontrollers, system-on-chips, general
purpose computers, and heterogeneous systems. With a
novel and unique approach at handling sampling rates as
well as clocking and computation domains, Stride prompts
the generation of highly optimized target code. The design
of the language facilitates incremental learning of its fea-
tures and is characterized by intuitiveness, usability, and
self-documentation. Users of Stride can write code once
and deploy on any supported hardware.

1. INTRODUCTION

In the past two decades we have witnessed the rise of mul-
tiple open-source electronic platforms based on embedded
systems. One of the key factors for their success has been
in the simplifications made to programming their small
computers.

By the nature of their design, they have mainly targeted
physical computing and graphics applications. Audio has
usually been made available through extensions. Although
solutions leveraging existing operating systems and lan-
guages exist, what we have not seen yet is a full featured,
audio-centric, multichannel platform capable of high reso-
lution, low latency, and high bandwidth sound synthesis
and processing. We attribute this to the lack of a high
level domain specific programming language (DSL) tar-
geting such a platform. All popular DSLs in the music
domain have been designed to run on computers running
full featured operating systems. Stride was conceived and
designed to address this problem, enabling users to run op-
timized code on bare metal.

2. APPROACH

The field of DSLs for sound and music composition is old
and crowded. To design a modern and effective language,
multiple design requirements need to be addressed.

Copyright: c©2016 Joseph Tilbian et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

For the instrument designer, sound artist, or computer
musician the language must simplify or unify the interface
between language entities such as variables, functions, ob-
jects, methods, etc. It must simplify interaction program-
ming and enable parallel expansion of its entities and in-
terfaces.

From the perspective of digital signal processing, the lan-
guage must be able to perform computations on a per sam-
ple basis, on real and complex numbers, in both time and
frequency domains. It must also handle synchronous and
asynchronous rates.

To take advantage of the current landscape of embedded
and heterogeneous systems in an efficient manner, the lan-
guage must abstract hardware resources and their config-
uration in a general and simple way. It must abstract the
static and dynamic allocation of entities as well as thread-
ing, parallelism, and thread synchronization. It must also
enable seamless interfacing of its entities running at differ-
ent rates.

While designing Stride, the intuitiveness of the language
as well as the experience of writing programs, by beginner
and advanced users alike, topped the requirements men-
tioned above and both had a profound impact on its syntax
design.

3. LANGUAGE FEATURES

A central consideration during the design of Stride was to
treat the language as an interface and try to make it as “er-
gonomic” as possible. Two other criteria were readability
and flow. That is, users should not need to read documen-
tation to understand code and should be able to write code
with as little friction as possible as the language works
in a “physically intuitive” way similar to interfacing in-
struments, effects processors, amplifiers, and speakers in
the physical world. To achieve this, features from popu-
lar and widely used general purpose and domain specific
languages were incorporated into Stride, like:

• Multichannel expansion from SuperCollider [1]
• Single operator interface and multiple control rates from

Chuck [2]
• Per sample processing and discarding control flow state-

ments from Faust [3]
• Polychronous data-flow from synchronous and reactive

programming languages like SIGNAL [4]
• Declarations and properties from Qt Meta Language
• Slicing notation for indexing from Python
• Stream operator from C++

mailto:jtilbian@mat.ucsb.edu
mailto:andres@mat.ucsb.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


The syntax of Stride is easy to learn as there are very few
syntactic constructs and rules. Entities in the language are
self-documenting through their properties, which expose
the function of the arguments they accept. The choice of
making Stride declarative was to separate semantics from
any particular implementation.

The novel and unique aspect of Stride is making rates and
hardware computation cores an intrinsic part of the lan-
guage by introducing computation domains and synchro-
nizing rates to them. This concept enables the distribution
of various synchronous and asynchronous computations,
encapsulated within a single function or method, to exe-
cute in different interrupt routines or threads on the hard-
ware. The domains can potentially be part of a heteroge-
neous architecture. Rather than just being a unit generator
and audio graph management tool, Stride enables the user
to segment computations encapsulated in a unit generator
during target code generation while handling it as a single
unit in their code. Stride also features reactive program-
ming, which enables complex interaction design.

This document presents a broad introduction to Stride,
leaving many details out in the interest of space.

3.1 Language Constructs

There are two main constructs to the language: Blocks and
Stream Expressions. Blocks are the building entities of the
language while stream expressions represent its directed
graph.

3.1.1 Blocks and Stream Expressions

Blocks are declared through a block declaration statement.
They are assigned a type and a unique label. Labels must
start with a capital letter and can include digits and the
underscore character. A block’s properties, discussed in
detail in § 3.1.3, are part of the declaration and define its
behavior. Code 1 shows a block declaration statement of
type signal with default property values. The signal block
is labeled FrequencyValue.

1 signal FrequencyValue {
2 default: 0.0
3 rate: AudioRate
4 domain: AudioDomain
5 reset: none
6 meta: none
7 }

Code 1: A signal block declaration statement with default properties

Blocks exchange tokens either synchronously or asyn-
chronously through ports. Tokens represent a single nu-
meric value, a Boolean value, or a character string. The
number and types of ports of a block depends on its type. A
block has primary and secondary ports. Primary ports are
accessible through a block’s label while secondary ports
are accessible through its properties. Connections between
primary ports are established in stream expressions using
the stream operator ( >>). Connections between primary
and secondary ports are either established during a block’s
declaration or during invocation in stream expressions.

Code 2 is a stream expression where the primary ports of
the Input, Process, and Output blocks are connected using
the stream operator. A secondary port of the Process block,

exposed through a property called control, is connected to
a primary port of the Value block.

1 Input >> Process ( control: Value ) >> Output;

Code 2: A stream expression with four block connections

Stream expressions must end with a semicolon. They are
evaluated at least once from left to right and in the top-
down order in which they appear in the code.

3.1.2 Block Types

Block types are categorized into three groups: Core, Aux-
iliary, and Modular.

The core blocks are signal, switch, constant, complex,
trigger, and hybrid. The signal block, discussed in detail
in § 3.1.4, is the principal element of the language. It dic-
tates when (the rate of token propagation) and where (the
computation domain) computations occur within a stream
expression. The switch block abstracts a toggle switch. It
is asynchronous and can have one of two states: on or off,
both keywords in Stride. The trigger block can trigger re-
action blocks, allowing reactive programming within an
otherwise declarative language. The complex block repre-
sents complex numbers and facilitates performing compu-
tations on them. The hybrid block enables the abstraction
of port types allowing compile time type inference, akin to
templates in object-oriented languages.

The auxiliary blocks are dictionary and variable. The
dictionary block holds key and value pairs. The variable
block dynamically changes the size of core block bundles,
discussed in §3.1.5, enabling dynamic memory manage-
ment.

The modular blocks are module and reaction. They en-
capsulate blocks and stream expressions to create higher
level functions and reactions respectively. Unlike mod-
ule blocks which operate on one token at a time, reaction
blocks, when triggered, continuously execute until stopped
when certain criteria are met.

3.1.3 Ports and Tokens

Ports have a direction and a type. A port’s direction can
either be Input or Output. Blocks receive or sample to-
kens through input ports and broadcast them through out-
put ports. There are eight port types in total. A port’s type
is defined by two attributes. Each attribute is an element
from the following two sets: {Constant, Streaming} and
{Real, Integer, Boolean, String}.

The validity of connections between ports is determined
by their types. Automatic type casting takes place between
certain port types. Only a single connection can be estab-
lished with an Input port while multiple connections can
be established with an Output port. Constant Output ports
can be connected to Streaming Input ports but Streaming
Output ports can not be connected to Constant Input ports.
Real, Integer and Boolean ports can be connected to each
other but not to String ports and vice versa. Boolean Out-
put port tokens are treated as 0 or 1 at Integer Input ports
and as 0.0 or 1.0 at Real Input ports. Integer and Real Out-
put port tokens with values 0 or 0.0 respectively are treated
as false at Boolean Input ports while tokens with any other
value are treated as true. Integer Output port tokens are
cast to real at Real Input ports while Real Output port to-
kens are truncated at Integer Input ports.



3.1.4 The Signal Block

The signal block has five properties as shown in Code 1.
The default property sets the block’s default value as well
as the primary port types to Streaming Integer, Streaming
Real, or Streaming String depending on whether the value
is an integer, a real or a string. The value assigned to the
rate property sets the block to run either in synchronous or
asynchronous mode. When assigned an integer or a real
value it runs in synchronous mode and when assigned the
keyword none it runs in asynchronous mode. The domain
property sets the computation domain of the block and syn-
chronizes its rate to the assigned domain’s clock. The reset
property resets the block to its default value when a trig-
ger block assigned to it is triggered. All blocks in Stride
have a meta property used for self documentation. It can
be assigned any string value.

3.1.5 Block Bundles

Blocks can be bundled together to form block bundles. The
primary ports of the bundled blocks are aggregated to form
a single interface. Individual ports, or a set of ports, of
the interface can be accessed by indexing. Indexing is not
zero-based, but starts at 1. The square brackets are the
bundle indexing and bundle forming operator. Core block
bundles can be formed during declaration by specifying the
bundle size in square brackets after the block’s label. Bun-
dles can also be formed in stream expressions by placing
blocks or stream expressions in square brackets separated
by commas.

3.2 Platforms and Hardware

Since Stride is a declarative language, a backend is re-
quired to translate Stride code to one that can be compiled
and executed on hardware. A backend is known as a Plat-
form. Stride code should start with the line of code shown
in Code 3. It instructs the interpreter to load specific plat-
form and hardware descriptor files. The platform descrip-
tor file abstracts hardware resources and contains transla-
tion directives while the hardware descriptor file lists the
available resources. When versions are not specified the
latest descriptor files are loaded. A third file, the hardware
configuration file, contains resource configurations. It can
be specified after the hardware version in Code 3 using
the keyword with. The default configuration file is loaded
when nothing is specified. The descriptor and configura-
tion files are written in Stride.

1 use PLATFORM version x.x on HARDWARE version x.x

Code 3: Loading a platform and a target hardware

The abstraction of hardware resources happens through
blocks with reserved labels. These abstractions are com-
mon among all platforms. For example, AudioIn and Au-
dioOut are signal bundles which abstract the analog and
digital audio inputs and outputs of hardware. The con-
stant block AudioRate abstracts the default sampling rate
of these inputs and outputs, while the constant block Au-
dioDomain abstracts the default audio callback function.
ControlIn, ControlOut, ControlRate, and ControlDomain
abstract non-audio ADCs, DACs, their default sampling
rate, and related default callback function respectively. The

range of AudioIn and AudioOut is [ -1.0, 1.0 ], while that
of ControlIn and ControlOut is [ 0.0, 1.0 ]. DigitalIn and
DigitalOut are switch block bundles that abstract digital
I/O TTL pins respectively. Communication protocols such
as Serial, Open Sound Control [5], MIDI, etc. are also ab-
stracted.

Creating aggregate systems based on multiple hardware
platforms is also possible. This is achieved by abstracting
the resources of aggregated hardware platforms through a
single hardware descriptor file and by abstracting the com-
munication between these platforms by the stream operator
and the hardware configuration file.

3.3 Rates and Domains

A signal block is assigned a rate and a domain at decla-
ration. Every domain has a clock with a preset rate de-
rived from the hardware configuration file and abstracted
through a constant block as discussed in § 3.2.

When a signal block is running in synchronous mode, it
synchronizes itself with the clock of its assigned domain.
It samples tokens at its primary input port and generates
them at its assigned rate. In this mode, the signal block
operates like a sample and hold circuit operating at a pre-
set rate. When running in asynchronous mode, the signal
block simply propagates tokens arriving at its primary in-
put port. In both modes, all blocks (or stream expressions
containing blocks) with connections to the signal block’s
primary output port recompute their state when a new to-
ken is generated. Computations happen in the domain each
block is assigned to.

In Stride, rates and domains propagate through ports. The
propagation is upstream. The keywords streamRate and
streamDomain represent the values of the propagated rate
and domain respectively where they appear. In Code 4 the
values of streamRate and streamDomain in the Map mod-
ule get their values from the FrequencyValue signal block.

1 ControlIn[1]
2 >> Map (
3 minimum: 55.0
4 maximum: 880.0
5 )
6 >> FrequencyValue;
7
8 Oscillator (
9 type: ’Sine’

10 frequency: FrequencyValue
11 )
12 >> AudioOut;

Code 4: A control input controlling the frequency of a sine oscillator

Since FrequencyValue, in Code 4, was not explicitly de-
clared, it is treated as a signal block with default property
values by the interpreter, as shown in Code 1. Therefore,
in the Map module block the values of streamRate and
streamDomain are AudioRate and AudioDomain respec-
tively.

The Oscillator module in Code 4 encapsulates four sig-
nal blocks: FreqValue, PhaseInc, Phase, and Output. They
represent the frequency, phase increment, phase, and out-
put of the oscillator respectively. In the module’s declara-
tion, the rate of the first two signals is set to none and both
are configured to receive their domain assignment from the
block connected to the frequency property. The rate of the



Phase signal is set to none and is configured to receive its
domain from the primary output port of the module, while
the Output signal is configured to receive both its rate and
domain from that port. This is summarized in Table 1.

Label Rate Domain

FreqValue none from ‘frequency’
PhaseInc none from ‘frequency’
Phase none streamDomain

Output streamRate streamDomain

Table 1: Labels, rates, and domains of signal blocks encapsulated in the
Oscillator module

Unlike other DSLs, where unit generators represent a sin-
gle computation unit, Stride can separate and distribute the
constituent computations of its modules, such as Oscilla-
tor, to achieve extremely efficient and highly optimized
target code.

To demonstrate the fine control Stride gives its user over
generated code, consider a hypothetical platform which
generates code 1 like the one shown in Code 5 based on
Code 4. The hypothetical platform defines two domains:
AudioDomain and ControlDomain. They are associated
with the audioTick and controlCallback functions in the
generated code respectively.

1 AtomicFloat ControlValue = 0.0;
2
3 void controlCallback (float *input, int size){
4 ControlValue = input[0];
5 }
6
7 void audioTick (float &output){
8 static float Phase, FreqValue, PhaseInc = 0.0;
9

10 FreqValue = map(ControlValue, 55., 880.);
11 PhaseInc = 2 * M_PI * FreqValue / AudioRate;
12
13 output = sin(Phase);
14 Phase += PhaseInc;
15 }

Code 5: Computations performed in the audio tick function on every call

The generated code is not efficient since FreqValue and
PhaseInc are repeatedly computed for every audio sample.
By explicitly declaring FrequencyValue as signal block and
assigning it a slower rate, as shown in Code 6, the effi-
ciency improves as shown in Code 7, where only changes
to Code 5 are shown. This is equivalent to control rate
processing in Csound and SuperCollider.

1 signal FrequencyValue { rate: 1024. }

Code 6: The rate of FrequencyValue set to 1024 Hz

1 Accumulator compute(1024. / AudioRate);
2
3 void audioTick (float &output){
4 ...
5 if (compute()){
6 FreqValue = map(ControlValue, 55., 880.);
7 PhaseInc = 2 * M_PI * FreqValue / AudioRate;

1 The C code shown in Code 5, 7, 9, and 11 is for demonstration pur-
poses only. The code has not been generated by a backend implementa-
tion and is not complete.

8 }
9 ...

10 }

Code 7: Accumulator added to reduce computation

The amount of computation can be further reduced by
setting the rate of FrequencyValue to none and adding the
OnChange module as shown in Code 8. Some of the com-
putation will now happen asynchronously and in a reac-
tive fashion. That is, only when the value of ControlIn[1]
changes some of the computation will be performed as
shown in Code 9.

1 signal FrequencyValue { rate: none }
2
3 ControlIn[1]
4 >> OnChange ()
5 >> Map ( minimum: 55. maximum: 880. )
6 >> FrequencyValue;

Code 8: Enabling asynchronous computation

1 void audioTick (float &output){
2 ...
3 static float PreviousValue = 0.0;
4 ...
5 if (ControlValue != PreviousValue){
6 FreqValue = map(ControlValue, 55., 880.);
7 PhaseInc = 2 * M_PI * FreqValue / AudioRate;
8 PreviousValue = ControlValue;
9 }

10 ...
11 }

Code 9: Some computation performed only with value change

By changing the domain of FrequencyValue, shown in
Code 10, the computations related to FreqValue and Pha-
seInc are performed in a reactive fashion in the control call-
back, as shown in Code 11. This change results in a highly
efficient audio tick function.

1 signal FrequencyValue {
2 rate: none
3 domain: ControlDomain
4 }

Code 10: Domain of FrequencyValue set to ControlDomain

1 AtomicFloat PhaseInc = 0.0;
2
3 void controlCallback (float *input, int size){
4 static float FreqValue, PreviousValue = 0.0;
5
6 if (input[0] != PreviousValue){
7 FreqValue = map(input[0], 55., 880.);
8 PhaseInc = 2 * M_PI * FreqValue/ AudioRate;
9 PreviousValue = input[0];

10 }
11 }
12
13 void audioTick (float &output){
14 static float Phase = 0.0;
15
16 output = sin(Phase);
17 Phase += PhaseInc;
18 }

Code 11: Highly efficient audio tick function

Generating highly efficient subroutines is crucial to opti-
mize performance on some embedded devices, particularly
ones that support instruction caching and equipped with a
tightly-coupled instruction memory.



3.4 Flow Control

Since control flow is not one of Stride’s syntactical con-
structs, it can be realized in two ways. The first is through
switching, achieved by bundling stream expressions fol-
lowed by indexing the aggregate interface. The second,
through triggering reaction blocks, which loop through the
stream expressions they encapsulate until they are termi-
nated.

4. CODE EXAMPLES

In the following subsections we present a few examples to
demonstrate some of the features and capabilities of Stride.

4.1 Multichannel Processing

In Code 12 the levels of the first two signal blocks of the
Input block bundle are changed by two signal blocks A and
B. They are then mixed down to a single signal connected
to the input ports of the first two signal blocks of the Output
block bundle, as depicted in Figure 1. All signal blocks are
declared with default values.

1 signal Input [4] {}
2 signal Output [4] {}
3 signal A {}
4 signal B {}
5
6 Input[1:2]
7 >> Level ( gain: [ A, B ] )
8 >> Mix ()
9 >> Output[1:2];

Code 12: Selective multichannel level adjustment and signal mixing

Input 1 Input 2

Level ()

Mix ()

Output 1 Output 2

A Level () B

Figure 1: Selective multichannel processing

4.2 Generators, Envelopes, Controls, and a Sequencer

In Code 13 two sine oscillator module blocks, one oscil-
lating at a perfect fifth of the other, are connected to two
envelope generator module blocks. The reset ports of the
oscillators and envelope generators are connected to the
trigger block Trigger. This is depicted in Figure 2. When
triggered, the oscillators’ phase gets reset to zero (the de-
fault value) while the envelope generators restart. Trigger
is activated on the rising edge of DigitalIn[1].

1 constant Frequency { value: 440. }
2 trigger Trigger {}
3
4 DigitalIn[1] >> Trigger ;
5
6 Oscillator (
7 type: ’Sine’
8 frequency: [ 1.0, 1.5] * Frequency
9 amplitude: [ 0.66, 0.33]

10 reset: Trigger

11 }
12 >> AD (
13 attackTime: [ 0.6 , 0.8 ]
14 decayTime: [ 1.4 , 1.2 ]
15 reset: Trigger
16 )
17 >> Mix ()
18 >> AudioOut[1:2];

Code 13: Two sine oscillators connected to two attack / decay modules

AD ()
0.6 / 1.4

AD ()
0.8 / 1.2 

Mix ()

Output 1 Output 2

Trigger

Oscillator ()
440.0 / 0.66

Oscillator ()
660.0 / 0.33

Figure 2: Sine oscillators and attack / decay modules with reset control

Code 14 extends Code 13 after modifying the block type
of Frequency. The extension enables the control of the
oscillators’ frequencies through ControlIn[1]. When the
value of ControlIn[1] changes, it gets mapped exponen-
tially and smoothed at a rate 20 times less than the Audio-
Rate.

1 signal Frequency { rate: AudioRate / 20. }
2
3 ControlIn[1]
4 >> OnChange()
5 >> Map ( mode: ’Exponential’ minimum: 110.
maximum: 880. )

6 >> Smooth ( factor: 0.05 )
7 >> Frequency;

Code 14: Controlling the frequencies of the oscillators

Code 13 can also be extended by Code 15 after chang-
ing the block type of Frequency and reconnecting Trig-
ger. The ImpulseTrain module block generates a trigger
that triggers the Sequencer reaction block, whose values
are imported from a Stride file called Notes into the note
namespace. The file contains constant block declarations
of musical notes.

1 import Notes as note
2
3 signal Frequency { default: note.C4 rate: none }
4
5 ImpulseTrain ( frequency: 0.5 )
6 >> ImpulseTrainValue
7 >> Compare ( value: 0 operator: ’Greater’ )
8 >> Trigger
9 >> Sequencer (

10 values: [ note.C4, note.E4, note.G4, note.C5 ]
11 size: 4
12 mode: ’Random’
13 )
14 >> Frequency;

Code 15: Control and triggering through an impulse train and a sequencer

4.3 Feedback

Code 16 is a feedback loop with 32 samples fixed delay as
depicted in Figure 3. Input and Feedback signal blocks are



bundled together before being connected to Level module
blocks. The mixed output is then delayed by 32 samples
and streamed into Feedback.

1 [ Input, Feedback ]
2 >> Level ( gain: [ 0.50, -0.45 ] )
3 >> Mix ()
4 >> Output
5 >> FixedDelay ( samples: 32 )
6 >> Feedback;

Code 16: Feedback with 32 samples delay

Input

Level ()
0.50

Level ()
- 0.45

Mix ()

Output

Feedback

FixedDelay ()
32

Figure 3: Feedback with 32 samples delay

4.4 Frequency Modulation Synthesis

Code 17 is a single oscillator feedback FM. The output of
the oscillator controls its own frequency after being multi-
plied by a modulation index and offset by a base frequency.
The index, base frequency, and amplitude are controlled by
control inputs

1 signal Index { rate: none }
2 signal Frequency { rate: none }
3 signal Amplitude { rate: none }
4
5 ControlIn[1:3]
6 >> OnChange ()
7 >> Map (
8 mode: [ ’Linear’, ’Exponential’, ’Linear’ ]
9 minimum: [ 0.08, 40.0 , 0.0 ]

10 maximum: [ 2.00, 200.0, 1.0 ]
11 >> [ Index, Frequency, Amplitude ];
12
13 Oscillator (
14 type: ’Sine’
15 frequency: Index * Output + Frequency
16 amplitude: Amplitude
17 )
18 >> Output;

Code 17: Single Oscillator Feedback Frequency Modulation

4.5 Fast Fourier Transform

Code 18 is a smoothed pitch tracker driving a sinusoidal
oscillator. FFT is performed on a bundle and the magni-
tude of the spectrum is computed, followed by finding the
index of the first maximum and converting it to a frequency
value. These computations are performed at AudioRate /
Size set by PeakFrequency. The computed frequency value
is then smoothed at a faster rate to control the frequency of
the oscillator running at AudioRate. streamRate represents
the value of the rate of the output port of the Level module
block, which is AudioRate / Size.

1 constant Size { value: 1024. }
2 signal InputBundle [Size] { rate: none }
3 signal PeakFrequency { rate: AudioRate / Size }

4 signal SmoothFrequency { rate: AudioRate / 20. }
5
6 InputBundle
7 >> RealFFT ()
8 >> ComplexMagnitude ()
9 >> FindPort ( at: ’Maximum’ mode: ’First’ )

10 >> Level ( gain: streamRate / 2 )
11 >> PeakFrequency
12 >> Smooth ( factor: 0.01 )
13 >> SmoothFrequency;
14
15 AudioIn[1]
16 >> FillBundle ( size: Size )
17 >> InputBundle;
18
19 Oscillator ( frequency: SmoothFrequency )
20 >> AudioOut[1:2];

Code 18: FFT Peak Tracking

4.6 Multirate Signal Processing

In Code 19 a baseband signal with 8 KHz bandwidth sam-
pled at 48 KHz is decimated by a factor of 4 before further
processing is performed on it to reduce the number of com-
putations. The signal is then interpolated back to the origi-
nal sampling rate. The DSP module block is a placeholder
for a chain of signal processing module blocks.

1 signal Input { rate: 48000 }
2 signal ProcessedSignal { rate: 12000 }
3 signal Output { rate: 48000 }
4
5 Input
6 >> Decimation (
7 type: ’PolyphaseFIR’
8 baseband: 8000
9 attenuation: 60

10 factor: 4
11 )
12 >> DSP ()
13 >> ProcessedSignal
14 >> Interpolation (
15 type: ’PolyphaseFIR’
16 bandwidth: 8000
17 attenuation: 60
18 factor: 4
19 )
20 >> Output;

Code 19: Multirate processing by decimation and interpolation

4.7 Granular Synthesis

In Code 20 grains are formed using sine oscillators and
Gaussian envelopes. The oscillators and their correspond-
ing envelopes are triggered by the GrainState switch block
bundle through the SetPort module block, which acts as
a demultiplexer. The index of the SetPort module is con-
trolled by the Counter module block, which increments at
the GrainTriggerRate value and rolls over when it reaches
the NumberOfGrains value. The state of a grain is reset af-
ter its envelope has generated the required number of sam-
ples, computed from the GrainDuration value. The output
of the envelopes are then mixed and sent to the audio out-
put after adjusting the level.

1 constant NumberOfGrains { value: 50 }
2 constant GrainTriggerRate { value: 15 }
3 constant GrainDuration { value: 0.005 }
4 constant GrainFrequency { value: 220 }



5
6 signal GrainIndex {
7 default: 0
8 rate: GrainTriggerRate
9 }

10
11 trigger ResetGrainState [NumberOfGrains] {}
12
13 switch GrainState [NumberOfGrains] {
14 default: off
15 reset: ResetGrainState
16 }
17
18 Counter (
19 startValue: 1
20 rollValue: NumberOfGrains
21 increment: 1
22 )
23 >> GrainIndex;
24
25 on
26 >> SetPort (
27 index: GrainIndex
28 )
29 >> GrainState;
30
31 Oscillator (
32 type: ’Sine’
33 frequency: GrainFrequency
34 reset: GrainState
35 )
36 >> Envelope (
37 type: ’Gaussian’
38 size: GrainDuration * streamRate
39 start: GrainState
40 complete: ResetGrainState
41 )
42 >> Mix ()
43 >> Level ( gain: 1.0 / NumberOfGrains )
44 >> AudioOut[1:2];

Code 20: Synchronous triggering of statically allocated grains

Advanced granular synthesizers can be designed in Stride
by allocating grains dynamically using the variable block
to manage the size of core block bundles and triggering
them using reaction blocks.

5. CONCLUSIONS

With its many features, Stride is an ideal language for cre-
ating and deploying new musical instruments on embed-
ded electronic platforms. With few syntactic constructs, it
is easy to learn, while its readability and intuitive coding
flow make it an attractive choice for beginners and experi-
enced users alike.

Stride documentation is available at:

http://docs.stride.audio

Acknowledgments

This work was funded in part by a graduate fellowship by
the Robert W. Deutsch Foundation through the AlloSphere
Research Group.

6. REFERENCES

[1] J. McCartney, “SuperCollider: a new real time synthe-
sis language,” in Proceedings of the 1996 International
Computer Music Conference, Hong Kong, 1996.

[2] G. Wang and P. R. Cook, “ChucK: A Concurrent, On-
the-fly, Audio Programming Language,” in Proceed-
ings of the 2003 International Computer Music Con-
ference, Singapore, 2003.

[3] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and
semantical aspects of Faust,” Soft Computing, vol. 8,
no. 9, pp. 623–632, 2004.

[4] A. Gamatié, Designing Embedded Systems with the
SIGNAL Programming Language. Springer, 2010.

[5] M. Wright and A. Freed, “Open Sound Control: A
New Protocol for Communicating with Sound Synthe-
sizers,” in Proceedings of the 1997 International Com-
puter Music Conference, Thessaloniki, 1997.

http://docs.stride.audio

	 1. Introduction
	 2. Approach
	 3. Language Features
	3.1 Language Constructs
	3.1.1 Blocks and Stream Expressions
	3.1.2 Block Types
	3.1.3 Ports and Tokens
	3.1.4 The Signal Block
	3.1.5 Block Bundles

	3.2 Platforms and Hardware
	3.3 Rates and Domains
	3.4 Flow Control

	 4. Code Examples
	4.1 Multichannel Processing
	4.2 Generators, Envelopes, Controls, and a Sequencer
	4.3 Feedback
	4.4 Frequency Modulation Synthesis
	4.5 Fast Fourier Transform
	4.6 Multirate Signal Processing
	4.7 Granular Synthesis

	 5. Conclusions
	 6. References

